
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Optimizing Hash-Array Mapped Tries for
Fast and Lean Immutable JVM Collections

Michael J. Steindorfer
Centrum Wiskunde & Informatica, The Netherlands

Michael.Steindorfer@cwi.nl

Jurgen J. Vinju
Centrum Wiskunde & Informatica, The Netherlands

TU Eindhoven, The Netherlands
INRIA Lille, France
Jurgen.Vinju@cwi.nl

Abstract
The data structures under-pinning collection API (e.g. lists,
sets, maps) in the standard libraries of programming lan-
guages are used intensively in many applications.

The standard libraries of recent Java Virtual Machine
languages, such as Clojure or Scala, contain scalable and
well-performing immutable collection data structures that
are implemented as Hash-Array Mapped Tries (HAMTs).
HAMTs already feature efficient lookup, insert, and delete
operations, however due to their tree-based nature their
memory footprints and the runtime performance of iteration
and equality checking lag behind array-based counterparts.
This particularly prohibits their application in programs
which process larger data sets.

In this paper, we propose changes to the HAMT design that
increase the overall performance of immutable sets and maps.
The resulting general purpose design increases cache locality
and features a canonical representation. It outperforms Scala’s
and Clojure’s data structure implementations in terms of
memory footprint and runtime efficiency of iteration (1.3–
6.7 x) and equality checking (3–25.4 x).

Categories and Subject Descriptors E.2 [DATA STORAGE
REPRESENTATIONS]: Hash-table representations

Keywords Hash trie, persistent data structure, immutability,
performance, cache locality, Java Virtual Machine.

1. Introduction
In this paper we reduce memory overhead and runtime per-
formance overhead from the implementations of immutable
collections on the Java Virtual Machine (JVM). Collections
under-pin many (if not most) applications in general purpose
programming languages as well as domain specific languages
that are compiled to the JVM. Optimizing collections implies
optimizing many applications.

Immutable collections are a specific area most relevant
to functional/object-oriented programming such as practiced
by Scala1 and Clojure2 programmers. With the advance of
functional language constructs in Java 8 and functional APIs
such as the stream processing API [6], immutable collections
become more relevant to Java as well. Immutability for col-
lections has a number of benefits: it implies referential trans-
parency without giving up on sharing data [17]; it satisfies
safety requirements for having co-variant sub-types [17]; it
allows to safely share data in presence of concurrency.

The prime candidate data structure for efficient immutable
collections is the Hash-Array Mapped Trie (HAMT) by Bag-
well [3]. This data structure design was already ported from
C++ to the JVM platform and is used especially in the Scala
and Clojure communities. However, these ports do not per-
form optimally, because the performance characteristics of
the JVM are substantially different from the performance char-
acteristics of C/C++ runtimes. The unique properties of the
JVM have not sufficiently been exploited yet. The following
properties hinder efficiency of data structures that are ported
directly from C/C++ to the JVM:

• The JVM currently does not allow custom memory layouts.
A HAMT forms a prefix tree and therefore consists of
linked nodes. Each HAMT node is represented as an object
that is arbitrarily positioned in memory, resulting in an
increased number of cache misses.
• Arrays are objects too. HAMT nodes use arrays to com-

pactly store references to sub-trees. Hence, arrays intro-
duce here yet another level of memory indirections.

1 http://scala-lang.org
2 http://clojure.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

OOPSLA’15, October 25–30, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3689-5/15/10...$15.00

http://dx.doi.org/10.1145/2814270.2814312

741

http://www.cwi.nl/sen1
mailto:Michael.Steindorfer@cwi.nl
http://www.cwi.nl/sen1
mailto:Jurgen.Vinju@cwi.nl
http://scala-lang.org
http://clojure.org

In contrast, C/C++ allows custom memory layouts that are
tailored to the shape of the data, without the need of memory
indirections. With possibly better data locality than on the
JVM, C/C++ runtimes directly place the content of statically
sized arrays into an object’s or struct’s memory region.

Fine-tuning data structures for cache locality usually
improves their runtime performance [19]. However, HAMTs
inherently feature many memory indirections due to their
tree-based nature, notably when compared to array-based
data structures such as hashtables. Therefore HAMTs presents
an optimization challenge on the JVM.

Our goal is to optimize HAMT-based data structures such
that they become a strong competitor of their optimized array-
based counterparts in terms of speed and memory footprints.

1.1 Contributions
Our contributions can be summarized as follows:

• We introduce a new generic HAMT encoding, named Com-
pressed Hash-Array Mapped Prefix-tree (CHAMP). CHAMP
maintains the lookup, insertion, and deletion runtime per-
formance of a HAMT, while reducing memory footprints
and significantly improving iteration and equality checks.
• In relation to CHAMP, we discuss the design and engineer-

ing trade-offs of two wide-spread HAMT implementations
on the JVM that are part of Clojure’s and Scala’s standard
libraries.
• In our evaluation, we compare the memory footprints and

runtime performance of CHAMP against immutable sets
and maps from the aforementioned two libraries.

Speedups of CHAMP range between 9.9 x and 28.1 x, for an
example program analysis algorithm that uses classical set
and relational calculus in a fixed-point loop. Using micro-
benchmarks we show that CHAMP reduces the memory foot-
print of maps by 64%, and of sets by a median of 52%
compared to Scala. Compared to Clojure, CHAMP achieves a
median memory footprint reduction of 15% for maps, and
of 31% for sets. Compared to both, iteration speeds up 1.3–
6.7 x, and equality checking speeds up 3–25.4 x (median).

1.2 Roadmap
The paper is structured as follows:

• Section 2 discusses background and opportunities for
optimizing current HAMT implementations on the JVM.
• Section 3 describes the foundations of CHAMP: the differ-

ently ordered data layout of the tree nodes, and compres-
sion via an additional bitmap.
• Section 4 introduces an efficient algorithm to keep a HAMT

in a compact and canonical form upon deletion, and how
to use this in the implementation of equality checking.
• Section 5 discusses relevant design and implementation

trade-offs that are related to our core contributions and
necessary to discuss the evaluation results later.

• Section 6 compares CHAMP against Clojure’s and Scala’s
data structures in terms of memory footprint and runtime
efficiency with the help of microbenchmarks.
• Section 7 compares the performance of all three data

structure libraries on a realistic case.
• Section 8 discusses threats to validity and notable differ-

ences between CHAMP and Clojure’s and Scala’s HAMTs.
• Section 9 discusses related work, before we conclude in

Section 10.

All source code of data structures and benchmarks discussed
in this paper is available online.3

2. Background
Although sets and maps need no motivation, immutable col-
lections are not as commonplace in the object-oriented do-
main yet. We enumerate several applications here to convince
the reader of the interest in optimizing them.

A number of (semi-)formal mechanisms for analyzing
sets and relations, based on Codd’s relational calculus or
Tarski’s relational algebra have or can have immutable col-
lections under-the-hood. Example Java-based systems in this
category are JRelCal [25], JGraLab [12] and Rascal [18].
Implementations of logic programming formalisms like, Dat-
alog [15], can also benefit from optimizations of these data-
structures [26]. Both categories of formalisms are used ac-
tively in static analysis of object-oriented programs. Another
application domain is the representation of graphs and models
in model-driven engineering.

Making immutable collections efficiently available in
object-oriented languages transfers the benefits of the afore-
mentioned formal languages (Prolog, Datalog, Relational
Calculus) to mainstream programming: immutability enables
equational reasoning.

2.1 HAMTs Compared to Array-based Hashtables
A general trie [10, 13] is a lookup structure for finite strings
that acts like a Deterministic Finite Automaton (DFA) without
any loops: the transitions are the characters of the strings, the
internal nodes encode prefix sharing, and the accept nodes
may point to values associated with the strings. In a HAMT,
the strings are the bits of the hash codes of the elements stored
in the trie. Depending on the branching factor we may use
different sizes of chunks from the hash code for indexing into
the (sparse) array of child nodes.

Figures 1a, 1b, and 1c graphically illustrate the structure of
a small HAMT set with branching factor 32 after step-by-step
inserting the objects A, B, C, and D. HAMTs encode the hash
codes of the elements in their tree structure (cf. Figure 1d).
The prefix tree structure grows lazily upon insertion until the
new element can be distinguished unambiguously from all
other elements by its hash code prefix. The index numbers

3 http://michael.steindorfer.name/papers/oopsla15-artifact

742

http://michael.steindorfer.name/papers/oopsla15-artifact

A
0

B
2

(a) A and B

A
0 2

0

B
0

C
4

(b) C

A
0 2

0
D

1

B
0

C
4

(c) D

hash(A) = 3210 = 0 1 0 . . .32

hash(B) = 210 = 2 0 0 . . .32

hash(C) = 409810 = 2 0 4 . . .32

hash(D) = 3410 = 2 1 0 . . .32

(d) hash codes in base 32

0 1
B

2
C

3
A

4 5
D

6

(e) equivalent array-based hash set

Figure 1. Inserting three integers into a HAMT-based set (1a, 1b, and 1c), on basis of their hashes (1d). Figure 1e shows an
equivalent and collision-free array-based hash set, with prime number table size 7 and load factor of 75%.

in the left top corner of each node refer to the positions of
elements in an imaginary sparse array. This array is actually
implemented as a 32-bit bitmap and a completely filled array
with length equal to the node’s arity. To change a HAMT set
into a map, a common method is to double the size of the
array and store references to each value next to each key.

Figure 1e illustrates the same data stored in a more
commonly known data structure, an array-based hashtable
with table size 7 and load factor of 75%. The buckets
assigned to elements are calculated by hashcode mod 7.
Comparing these two figures we highlight the following
inherent drawbacks of HAMTs against array-based hashtables:

Memory overhead: Each internal trie node adds an over-
head over a direct array-based encoding, so finding a small
representation for internal nodes is crucial. On the other
hand, HAMTs do not need expensive table resizing and do
not waste (much) space on null references.

Degeneration on delete: Any delete operations can cause a
HAMT to deviate from its most compact representation,
leading to superfluous internal nodes harming cache local-
ity, adding indirections for lookup, insertion and deletion,
and increasing memory size. Delete on most hashtable
implementations is a lot less influential.

Non-locality slows down iteration: When iterating over all
elements, a hashtable benefits from locality by linearly
scanning through a continuous array. A HAMT, in com-
parison, must perform a depth-first in-order traversal over
a complex object graph (going up and down), which in-
creases the chance of cache misses.

Equality is punished twice: While iterating over the one
HAMT and looking up elements in the other, the non-
locality and a possibly degenerate structure make equality
checking an expensive operation.

2.2 Mutable and Immutable Update Semantics
HAMTs are suitable to implement data structures with mutable
and immutable update semantics. The two variants differ in
how and when nodes have to be reallocated. Mutable HAMTs
reallocate a node if and only if the node’s arity changes [3].
Otherwise, values or sub-node references are updated in-

A
0 2

0
D

1

B
0

C
4

(a) Internal

0 2

A
0 1

0 4
D

B C

(b) Leaf

Figure 2. HAMT-based sets with values in internal nodes
versus values at the leaves only.

place without reallocation. In contrast to mutable HAMTs,
immutable HAMTs perform path-copying on updates [22, 27]:
the edited node and all its parent nodes are reallocated. The
resulting new root node satisfies the immutability property
by resembling the updated path-copied branch and, for the
remainder, references to unmodified branches.

2.3 Memory Layouts and Hash Code Memoization
Figure 2 illustrates the two principle choices for a HAMT’s
memory layout: storing values next to sub-nodes directly in
internal nodes, as opposed to storing them at the leaf level.

The former approach originates from Bagwell [3], it
increases locality and saves space over the latter. Because
a HAMT encodes the prefixes of hash codes implicitly in its
tree structure, it can avoid storing full 32-bit hash codes. As
a result, this design yields a very low memory footprint at the
potential cost of increased runtimes of update operations.

The latter approach stores elements in leaf nodes, sepa-
rated from inner prefix tree nodes. While leaf nodes increase
the data structure’s memory footprint, they enable storage
of additional information along the elements. Scala for ex-
ample memoizes the hash codes of elements inside the leafs.
Memoized hash codes consequently enable fast failing on
negative lookups by first comparing hash codes, and avoid
recalculation of hash codes upon prefix expansion.

743

1 abstract class HamtCollection {

2 HamtNode root; int size;

3

4 class HamtNode {

5 int bitmap;

6 Object[] contentArray;

7 }

8 }

Listing 1. Skeleton of a HAMT in Java with internal values.

CHAMP builds upon the internal nodes design and primary
optimizes for smaller footprints and cache locality. Neverthe-
less, to reconcile both designs in our evaluation section, we
will also analyze a CHAMP variant that supports hash code
memoization in Section 5.2.

3. Increasing Locality
Listing 1 shows a Java source code skeleton that is the basis
for implementing HAMT collections with the internal nodes
design. Traditionally [3], a single 32-bit integer bitmap is
used to encode which slots in the untyped array are used,
together with a mapping function that calculates offsets in the
array by counting bits in the bitmap. For set data structures,
we can use Java’s instanceof operator to distinguish if an
array slot holds either an element, or a sub-node reference.
This encoding orders values by their hash codes—the bitmap
compression solely eliminates empty slots.

In the following, we first devise a new compact data lay-
out for internal trie nodes which enables faster iteration and
equality checking. The causes of the performance increase
are compactness and locality, both leading to better cache per-
formance, and avoiding the use of the instanceof operation.

3.1 Partitioning Values and Sub-Nodes
Maps with internal values (as opposed to sets) require addi-
tional storage room for the values. To cater for this the dense
array can be allocated at twice the normal size such that next
to each key a reference to a value may be stored. Each index
is then multiplied by 2 to skip over the extra slots.

Figure 3a exemplifies a HAMT-based map with internal
values as found in Clojure. Accidentally, the root node has
two child nodes, a few empty slots with null references and
a key/value pair in the middle. Due to the fixed tuple length
of two, an empty array slot is wasted per sub-node reference.
Note that the C/C++ HAMT implementation of Bagwell [5]
also uses fixed length tuples of size two for maps, however
C/C++ offers better reuse of the empty slots, e.g., with union
types to store other data instead.

HAMT Design Results in Poor Iteration Performance. One
aspect that is directly influenced by the order of array ele-
ments is iteration performance. The order of child nodes
and values depends entirely on the data structure’s content;
sub-nodes and internal values may alternate arbitrarily. An

in-order traversal for iteration will switch between the trie
nodes a few times, because values and internal nodes alter-
nate positions in the array, causing a bad cache performance.
For iteration, the HAMT design requires to go through each
node at most m+ n times, where n equals the HAMT’s total
number of sub-tree references and m equals the total number
of references to internal data entries.

CHAMP Design Improves Iteration Performance due to a
Cache-Oblivious Reordering with Compression. To in-
crease data locality during iteration —and further to remove
the need for empty array slots— we propose to split the
single untyped array conceptually into two typed arrays
(cf. Figure 3b): one array holding sub-node references, and
another one holding values. This split effectively reorders
the elements, while the ordering within each group remains.
The element order is irrelevant anyway in already unordered
set and map data structures. We remove the need for using
instanceof, by introducing an extra bitmap that makes the
separation between sub-nodes and internal values explicit.
For iteration, the proposed CHAMP design reduces the com-
plexity from O(m+ n) to O(n). A full traversal in CHAMP
requires exactly n node visits, because it can yield all internal
values before descending for each sub-node exactly once.

Mitigating Memory Overhead. The CHAMP design concep-
tually requires two arrays and two accompanying bitmaps.
A naive CHAMP implementation would introduce significant
overhead compared to a HAMT. Figure 3b shows how we
mitigate the incurred overhead by sharing one array for the
two compressed array sequences. The second arrow indicates
the need for the second bitmap. Two bitmaps are necessary
to compute indices for either kind of value. We propose to
use one 32-bit bitmap, called datamap, to store if a branch is
either absent or a value reference, and another 32-bit bitmap,
called nodemap, to store if a branch is either absent or a sub-
node reference. Especially for maps we can spare the extra
bitmap because we are saving an empty array cell for every
sub-node due to our explicit encoding.

3.2 Mitigating Runtime Overhead
We have increased data locality at the cost of a more ex-
pensive index calculation that requires an extra bitmap and
additional bit-level operations. This directly influences the
runtime performance of lookup, insertion, and deletion. Each
of these operations now requires a case distinction with, in
worst case, two separate lookups in the two distinct bitmaps,
to decide in which group an element is present. Because we
compactly store both groups in a single array, we need to
perform offset-based indexing when accessing the second
group of sub-node references. Both the offset and the index
calculations require more bit-level operations on the datamap
and nodemap, as explained below.

Listing 2 illustrates Java snippets of how the indexing is
usually implemented. Lines 1–3 shows the masking function
that selects the prefix bits based on the node level in the

744

2 2
4

4
C

4 5 5

2
0

A
0

34
1

X
1

5
0

B
0

37
1

Y
1

(a) Current HAMT ordering with 1-bit state.

4
4

C
4 2 5

2
0

A
0

34
1

X
1

5
0

B
0

37
1

Y
1

(b) Conceptual CHAMP ordering with 2-bit state.

4
4

C
4 5 2

2
0

A
0

34
1

X
1

5
0

B
0

37
1

Y
1

(c) Final CHAMP ordering with 2-bit state.

Figure 3. HAMT-based map implementations with values in internal nodes (various variants). The index numbers in the top left
corners denote the logical indices for each key/value entry and not their physical indices. Figure 3a specifically shows Clojure’s
HAMT implementation that indicates sub-nodes by leaving the array slot for the key empty.

tree (shift == 5 * level). The index function (lines 4–6)
requires a bitpos variable with a single non-zero bit, desig-
nating one of the 32 possible branches. It then maps from the
bitmap/bitpos tuple to a sparse-array index by counting the
non-zero bits in bitmap on the right of bitpos.

Lines 8–18 illustrate indexing into a traditional HAMT that
requires only a single call to index. For sets (WIDTH = 1),
the content array does not have empty cells with null, for
maps (WIDTH = 2) it follows the convention that an empty
key slot indicates that the value slot is a sub-node reference.

Lines 20–34 show our proposal that requires different
methods for accessing keys and sub-nodes. Accessing keys
works equally to current HAMTs, however we call the index

function with the datamap. For accessing sub-nodes we first
calculate an offset (with datamap) before calling the index

function with nodemap.
One option to remove the overhead of the offset calcula-

tion is to cache its value in a byte field. However, the extra
byte pushes the memory layout of an internal node right
over the JVM’s 8-byte alignment edge, which seriously in-
fluences the memory footprint. Instead we remove the need
for the additional field as follows. In our optimized and fi-
nal CHAMP encoding, as displayed in Figure 3c, we reverse
the storage order of the nodes in the back of the array. We
can then perform contentArray.length - 1 - index in-
stead of the previous offset + index calculation. Since the
length field is there anyway in the array we pay no extra
cost in memory. CHAMP’s optimized index calculation code
that mitigates overhead is displayed in Listing 2, lines 36–42.

3.3 Summary
We have increased locality by reshuffling the references in a
trie node, at the cost of more bit-level arithmetic. Otherwise
the lookup, insert, and delete operations are unchanged. For
iteration, the proposed CHAMP design reduces complexity
from O(m+ n) to O(n). For maps we avoid empty slots in
the arrays and thus save memory. In the evaluation section
we will show that the net result of our design is satisfying.

4. Canonical Tries
Another way to increase locality and to further save memory
is to keep a HAMT in a compact canonical representation, even

after deleting elements. For example, in Figure 1b removing
object C from the deepest node would yield a perfectly valid
HAMT. However, in the optimal case, deletion would restore
the state of Figure 1a, resulting in a smaller footprint and less
dereferencing upon lookup, insertion, and deletion.

Clojure’s HAMT implementations do not compact on delete
at all, whereas Scala’s implementations do. In the remainder
of this section we contribute a formalization (based on
predicates and an invariant) that details how a HAMT with
inline values can efficiently be kept in a compact canonical
form when deleting elements. Bagwell’s original version of
insert is enough to keep the tree canonical for that operation.
All other operations having an effect on the shape of the trie
nodes can be expressed using insertion and deletion.

4.1 Contract for Canonicalization
We formalize the canonical form of internal trie nodes by
a strict invariant for trie nodes. The reasons are that canon-
icalization depends on the children of trie nodes to be in
canonical form already and the many operations on HAMTs
are somewhat complex. An explicit invariant helps in imple-
menting the canonical form correctly and in optimizing the
code. We need two basic properties to express the invariant:

Arity (local): The arity of a node designates the number of
outgoing edges. In CHAMP the arity equals the sum of
nodeArity and payloadArity, counting bits set to 1 in
nodemap and datamap respectively.

Branch Size (non-local): The branch size equals the total
number of elements that are transitively reachable from a
node. Later we will find an approximation for branch size
which can be computed locally.

We assume both properties are available as methods on the
objects of the internal nodes. The following class invariant
asserts canonically minimal trie nodes:

CHAMP invariant:
branchSize ≥ 2 ∗ nodeArity+ payloadArity

The invariant states that sub-trees with arity less than 2 are not
allowed. This implies that single elements should always be
inlined and singleton paths to sub-tries should be collapsed.
The invariant holds for all nodes on all levels.

745

1 static final int mask(int hash, int shift) {

2 return (hash >>> shift) & 0b11111;

3 }

4 static final int index(int bitmap, int bitpos) {

5 return Integer.bitCount(bitmap & (bitpos - 1));

6 }

7

8 // HAMT indexing with 1-bit state

9 Object getKeyOrNode(K key, int hash, int shift) {

10 int bitpos = 1 << mask(hash, shift);

11

12 int index = WIDTH * index(this.bitmap, bitpos);

13 if (contentArray[index] != null) {

14 return contentArray[index];

15 } else {

16 contentArray[index + 1];

17 }

18 }

19

20 // Proposed CHAMP indexing with 2-bit state

21 K getKey(K key, int hash, int shift) {

22 int bitpos = 1 << mask(hash, shift);

23

24 int index = WIDTH * index(this.datamap, bitpos);

25 return (K) contentArray[index];

26 }

27

28 Node getNode(K key, int hash, int shift) {

29 int bitpos = 1 << mask(hash, shift);

30

31 int offset = WIDTH *
Integer.bitCount(this.datamap);

32 int index = offset + index(this.nodemap, bitpos);

33 return (Node) contentArray[index];

34 }

35

36 // Optimized CHAMP indexing into sub-nodes

37 Node getNode(K key, int hash, int shift) {

38 int bitpos = 1 << mask(hash, shift);

39

40 int index = contentArray.length - 1 -

index(this.nodemap, bitpos);

41 return (Node) contentArray[index];

42 }

Listing 2. Index calculations for the various designs.

4.2 Deletion Algorithm
Deletion is a recursive operation on the tree. To satisfy the
invariant, delete on a trie node structure should be the exact
inverse operation of insert.

Listing 3 contains a pseudocode description of the delete
operation. For a given key the search starts at the root node.
If the node contains the search key locally, the operation
removes the data tuple from the node and returns an updated
node. Otherwise, if the node contains a sub-tree for a given
hash-prefix, the operation will descend recursively.

1 delete(node: Node, key: Object): (Boolean, Node) {

2 if (key in datamap) {

3 if (node.arity == 1)

4 return (true, EMPTY_NODE)

5 else

6 return (true, node without key)

7 }

8

9 if (∃subNode for which key is in nodemap) {

10 (isModified, resultNode) = delete(subNode, key)

11

12 if (isModified == false) // short-circuit

13 return (false, node)

14

15 if (node.arity == 1)

16 if (resultNode.branchSize == 1) // propagate

17 return (true, resultNode)

18 else

19 return (true, node updated with resultNode)

20 else if (resultNode.branchSize == 1) // inline

21 return (true, (node without subNode) with key)

22 else

23 return (true, node updated with resultNode)

24 }

25

26 return (false, node) // key not found

27 }

Listing 3. Pattern match logic for deletion in pseudocode.

If the hash prefix is in datamap (line 2) and the value
stored matches the key we are looking for then we can
remove a value right here. In case a CHAMP instance consists
of a single root node with a singe element, an EMPTY_NODE

constant is returned, otherwise we return a copy of the node
without the current element. We may temporarily generate
a singleton value node (which is allowed by the invariant
since it does not have a parent yet) but later in line 21 on the
way back from the recursion this singleton will be collapsed.
A singleton can only fall through, when delete collapses a
multi-node tree of two elements to a tree with a single root
node with a single element.

Note that both operations in line 21 (removal of subNode
and inlining of key) need to be executed atomically to
ensure the invariant. We provide a copying primitive (named
copyAndMigrateFromNodeToInline) in our implementation
that performs both modifications with a single array-copy.

If the hash prefix is in the nodemap (line 9) then delete
is called recursively. The compaction to satisfy the invariant
happens on the way back from the recursion, dispatching on
the values of arity and branch size of the current node and
the received new node. If the current node’s size is 1 then we
may pass the new node to our own parent if it only contains
values (line 17). If the received node has a bigger size, then
we make a copy of the current singleton node with the new
child at the right position (line 19). The final case is when

746

1 byte sizePredicate() {

2 if (this.nodeArity() == 0)

3 switch (this.payloadArity()) {

4 case 0: return SIZE_EMPTY;

5 case 1: return SIZE_ONE;

6 default:return SIZE_MORE_THAN_ONE;

7 }

8 else return SIZE_MORE_THAN_ONE;

9 }

Listing 4. sizePredicate method used for compaction.

the new child node wraps a value, generated by line 6, and
we can inline it here right now. Line 23 implements the case
where no compaction or inlining takes place at all.

Deletion Implementation Details. The object-oriented im-
plementation of the delete algorithm involves careful consid-
eration. It should avoid re-computations of hash codes, avoid
allocation of temporary objects and it should maintain the
class invariant. Also, computing the predicates used in the
algorithm may become a bottleneck, especially computing
the branch size of a trie node is problematic since this opera-
tion is linear in the size of the sub-tree. The following design
elements are necessary to make the delete operation efficient:

• Passing a single state object through the recursive calls
of the delete method, like a reference parameter. The
recursive calls record whether a modification was made.
• Inspecting the state of a received node using the arity

and branchSize properties, dispatching on their values.
Using these properties we avoid use of instanceof.
• Abstracting branchSize into an over-approximation

which can be computed without recursion or caching. For
the deletion algorithm (cf. Listing 3) we need to know if
a sub-tree has no elements, exactly one element, or more.
Thus we can substitute calls to branchSize with calls to
the sizePredicate method (cf. Listing 4) that returns a
byte representation of the aforementioned three states.

4.3 Structural Equality Checking
Tree compaction on delete lays the groundwork for faster
(structural) equality checking. In an ideal world without
hash collisions we would short-circuit recursive equality
checks without further ado: if two nodes that are reachable by
the same prefix have different bitmaps it is guaranteed that
their contents differ. Together with short-circuiting on equal
references (then the sub-tries are guaranteed equal), the short-
circuiting on unequal bitmaps makes equality checking a
sub-linear operation in practice.4 Only when the heap graphs
of two equal HAMTs are disjunct, then a full linear traversal is
necessary to assert equality.

4 Note that an alternative implementation of equals —e.g., such as imple-
mented in Clojure— is to iterate over one tree while looking up each key in

Still, hash collisions do occur in practice. In a HAMT, a
collision is detected when all hash code bits are consumed and
two elements cannot be differentiated. Similar to a hashtable,
a chained bucket can then be created at the bottom of the tree
to hold both elements (or more). To be able to see why short-
circuiting on unequal bitmaps is still possible, even though
the structure of the buckets depends on dynamic insertion and
deletion order, consider that we short-circuit only on hash
codes prefixes being unequal and not on the actual values.
This means that if the Java hash code contract —unequal
hash codes imply unequal values— has been implemented
correctly the short-circuiting is safe. Listings 5 and 6 show
the source code of equals methods (regular node and hash
collisions node) of a CHAMP-based set implementation.

Canonical representations enable equality checks to ben-
efit from the persistent nature of immutable HAMTs. Like
lookup, insert, and delete already did, equality checks can ex-
ploit short-circuiting due to incremental updates and sharing
of intermediate nodes between different trie instances.

4.4 Summary
Compacting trie nodes on delete and only lazily expanding
them on insert makes sure they are always in a canonical and
compact state. The algorithm satisfies an invariant for trie
nodes and needs to be implemented with care to mitigate the
overhead. We save memory and gain locality, but we increase
CPU overhead with more complex bitmap compaction. The
evaluation in Section 6 analyses the true impact of the
proposed trade-offs.

5. Further Factors of Efficiency
Preliminary to the evaluation we discuss two other factors of
efficiency that are orthogonal to CHAMP’s design, but are key
design decisions that are influential in the evaluation.

5.1 Implementing Fast Iterators
To support Java’s Iterable<T> and Iterator<T> interfaces,
our code is layered as in Listing 1. The outer (collection) layer
provides key, value and entry iterators and a node iterator for
the entire trie. The inner (trie node) layer provides separate
iterators for the internal values and for the child nodes of each
internal node. Thus, the internal iterators essentially reflect
the logical partitioning.

We implemented the node iterator using a stack interface.
Since we statically know the maximal trie depth, the stack
can be implemented in a pre-allocated cache-friendly array.

The idea of using pre-allocated stack iterators is not
novel. Scala’s HAMT implementations are already leveraging
such iterators. Our own implementation is more elaborate to
achieve the worst case iteration complexity reduction from
O(m+ n) to O(n) as discussed in earlier in Section 3.1.

the other until the first key which is not found. This operation is especially
expensive on large HAMTs as it performs in O(n log32(n)).

747

1 boolean equals(Object other) {

2 if (other == this) return true;

3 if (other == null) return false;

4 if (getClass() != other.getClass())

5 return false;

6

7 ChampNode<?> that = (ChampNode<?>) other;

8

9 if (datamap != that.datamap)

10 return false;

11 if (nodemap != that.nodemap)

12 return false;

13

14 if (!Arrays.equals(nodes, that.nodes))

15 return false;

16

17 return true;

18 }

Listing 5. equals method of a regular CHAMP node.

1 boolean equals(Object other) {

2 if (other == this) return true;

3 if (other == null) return false;

4 if (getClass() != other.getClass())

5 return false;

6

7 HashCollisionNode<?> that =

(HashCollisionNode<?>) other;

8

9 if (hash != that.hash)

10 return false;

11

12 for (K key : keys)

13 if (!that.contains(key))

14 return false;

15

16 return true;

17 }

Listing 6. equals method of a set’s hash collision node.

5.2 Memoization and Hash Codes
In the following we discuss design and performance implica-
tions of memoization of hash codes on two different levels:
on element basis, and on collection level. For the latter case
we discuss implications of incrementally updating them.

Memoizing Collection Hash Codes. A key design element
of CHAMP is to use the outer wrapper objects to cache collec-
tion hash codes and to incrementally update these hash codes
as elements are added or removed. This requires insertion-
order independent and reversible hash code computations.
Due to the JVM’s 8-byte memory alignment, adding the hash
code field to CHAMP does not increase its memory footprint.5

In contrast, memoization of collection hash codes is not an
option for Scala, because in their class hierarchy every node
is also a collection. Adding another field to each node would
increase the memory footprint of inner nodes by 8 bytes.

Memoizing Element Hash Codes. While Scala’s HAMT im-
plementations memoize the full 32-bit hash codes of keys in
leaf nodes, neither Bagwell’s HAMT design nor Clojure’s im-
plementations consider memoization. Adding memoization
is trading a higher memory footprint against improved worst
case runtime performance of lookup, insertion, and deletion.

Adding Memoization of Element Hash Codes to CHAMP.
We strive for a flexible design that can be used with or
without memoization. To add memoization to CHAMP, we
use a technique called field consolidation [14]. Instead of
storing cached hash codes in a large number of leaf nodes
as Scala does, we consolidate the hashes of all elements of a
node, to store them in a single integer array per node.

5 This is valid for JVM instances with less than 32GB heaps with the
CompressedOops option enabled (default). https://wikis.oracle.com/
display/HotSpotInternals/CompressedOops.

With MEMCHAMP we will refer throughout the text to the
variant of CHAMP that adds memoized element hash codes,
but drops incremental collection hash codes.

5.2.1 Performance Implications of Memoization
Table 1 summarizes the worst case number of hashCode and
equals calls per lookup or update operation. It shows the
cross product of all combinations from hash-set and hash-
map data types paired with feature options of memoizing
and incrementally updating the collection hash code, and
memoizing the hash codes of the keys.

As in general with hash-based data structures, each op-
eration needs to calculate the hash code of the key. Non-
memoized HAMTs call in worst case hashCode once more
with Insert ¬Contained: if a prefix collision occurs the hashCode
of the already stored element must be recalculated to extend
the prefix tree. Otherwise, only incremental map operations
cause additional hashCode calls, because suddenly the hash
codes of the values are eagerly evaluated. Furthermore, equal-
ity is checked at most once for keys. Memoization avoids
some equals calls due to fast-failing on equal hashes. Like
Clojure and Scala, also other JVM collection libraries dif-
fer in their design choices for hash code memoization. E.g.,
Google’s Guava6 collections do not memoize key hash codes,
whereas Java Development Kit (JDK) collections do.

We conclude, based on Table 1, that for sets incrementally
calculating collection hash codes comes essentially for free:
the number of hashCode and equals calls stay the same.
Maps in contrast pay for the eager and incremental evaluation
of value hash codes, as compared to lazy evaluation. We
suggest considering incremental collection hash codes for
maps, if nesting of maps into other hash-based collections is
a frequent pattern in a program, library or language.

6 https://github.com/google/guava

748

https://wikis.oracle.com/display/HotSpotInternals/CompressedOops
https://wikis.oracle.com/display/HotSpotInternals/CompressedOops
https://github.com/google/guava

Table 1. Worst case number of invocations of hashCode/equals per HAMT operation. The numbers exclude full hash collisions,
but assume distinct hash codes with matching prefixes. For each operations we distinguish between the succeeding and the
failing case. The table is split by the following HAMT features: memoizing and incrementally updating the collection hash code,
and memoizing the hash codes of the keys.

Operation hashCode / equals Calls per Data Structure and Feature Set

HAMT Map HAMT Set

¬Incremental Incremental ¬Incremental Incremental

¬Memo Memo ¬Memo Memo ¬Memo Memo ¬Memo Memo

Lookup (¬Contained) 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 0

Lookup (Contained) 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

Insert (¬Contained) 2 / 1 1 / 1 3 / 1 2 / 0 2 / 1 1 / 0 2 / 1 1 / 0

Insert (Contained) 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

Replace (Contained) 1 / 1 1 / 1 3 / 1 3 / 1 – / – – / – – / – – / –

Delete (¬Contained) 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 0

Delete (Contained) 1 / 1 1 / 1 2 / 1 2 / 1 1 / 1 1 / 1 1 / 1 1 / 1

Total 8 / 7 7 / 4 12 / 7 11 / 4 7 / 6 6 / 3 7 / 6 6 / 3

6. Assessing Performance Characteristics
We further evaluate the performance characteristics of
CHAMP and MEMCHAMP. While the former is most com-
parable to Clojure’s HAMTs, the latter is most comparable to
Scala’s implementations. Specifically, we compare to Clo-
jure’s PersistentHash{Set,Map} and Scala’s immutable
Hash{Set,Map} implementations. We used latest stable ver-
sions available of Scala (2.11.6) and Clojure (1.6.0) at the
time of evaluation.

The evaluated CHAMP data structures are used daily in the
runtime environment of the Rascal7 programming language,
and are currently being tested for inclusion into the Object
Storage Model [32] of the Truffle language implementation
framework. We report on this to assert that our implemen-
tations have been well tested and used by users other than
ourselves, mitigating threats to the internal validity of the
following evaluation.

Assumptions. We evaluate the pure overhead of operations
on the data structures, without considering cost functions for
hashCode and equals methods. Our performance assessment
is supposed to reveal the overhead of maintaining bitmaps,
incremental hash codes and hash code memoization.

Hypotheses. We expect CHAMP’s runtime performance of
lookup, deletion, and insertion to equal Clojure’s and Scala’s
runtime performance, albeit canonicalizing and computing
over two bitmaps. Runtimes should not degrade below a
certain threshold —say 20% for median values and 40% for
maximum values would just be acceptable— (Hypothesis 1).

7 http://www.rascal-mpl.org

In general we are betting on significantly better cache be-
havior and therefore expect to see speedups in iteration (Hy-
pothesis 2). We further expect structural equality checking
of two equal collections that do not share reference equal
objects to yield at least the same —and likely even higher
improvement— as iteration (Hypothesis 3). We also expect
that equality checks on derived sets and maps, i.e., measur-
ing coll.insert(x).delete(x).equals(coll), to be or-
ders of magnitude faster (Hypothesis 4).

Despite the addition of a second bitmap, we expect CHAMP
maps to use less memory than Clojure’s maps because we
avoid empty slots (Hypothesis 5). We expect to save a
significant amount of memory in big HAMTs because many
nodes should have more than two empty slots.

The following hypothesis (Hypothesis 6) formulates our
expectations with respect of memory savings of the two HAMT
designs: internal values versus leaf nodes. To get a precise
expectation we modeled and computed the growth of HAMT-
based sets and maps on the Java code skeleton from Figure 1.
We assume the absence of empty cells in the contentArray

and consider the JVM’s 8-byte memory alignment. Based on
our model [29], we expect for optimal implementations that
HAMTs with internal values require roughly half the memory
of HAMTs with explicit leaf nodes, both in 32-bit and 64-bit.

With our final hypothesis (Hypothesis 7) we expect the
memory footprints of MEMCHAMP to remain close to Clo-
jure’s footprints and still vastly improve over Scala’s foot-
prints. With field consolidation MEMCHAMP avoids memory
gaps due to object alignment, while minimizing the number
of worst case hashCode and equals methods invocations to
the same level that Scala’s implementations do.

749

http://www.rascal-mpl.org

Benchmark Selection. We assess the performance charac-
teristics of CHAMP with microbenchmarks, focusing on the
usage of sets and maps to store and retrieve data and to ma-
nipulate them via iterations over the entire collection. We
deliberately chose to not use existing CPU benchmark suites
or randomly selected applications. The reasons are:

• The pressure on the collection API is quite different per
selected real-world application. We have no background
theory available to randomly select representative appli-
cations which use immutable collections without likely
introducing a selection bias.
• It is possible to accurately isolate the use of collections

and their operations easily in our microbenchmark setup
to confirm or deny our hypotheses. Using these results the
designers of standard libraries for programming languages
as well as their users will be able to make an informed
designed choice for the set and map data structures,
irrespective of the other important parts of their designs.

So, on the one hand the importance of these optimizations
is different for every application and this remains a threat
to external validity. On the other hand the results in the
following experiments are very general since they hold for
every immutable set or map implementation that uses the
proposed optimizations.

6.1 Experiment Setup
We use a machine with Linux Fedora 20 (kernel 3.17)
and 16GB RAM. It has an Intel Core i7-2600 CPU, with
3.40GHz, and an 8MB Last-Level Cache (LLC) with 64-byte
cache lines. Frequency scaling was disabled.

We used Oracle’s JVM (JDK 8u25) configured with a
fixed heap size of 4GB. We measure the exact memory
footprints of data structures with Google’s memory-measurer
library.8 Running times of operations are measured with
the Java Microbenchmarking Harness (JMH), a framework
to overcome the pitfalls of microbenchmarking.9 For all
experiments we configured JMH to perform 20 measurement
iterations of one second each, after a warmup period of
10 equally long iterations. For each iteration we report the
median runtime, and measurement error as Median Absolute
Deviation (MAD), a robust statistical measure of variability
that is resilient to small numbers of outliers. Furthermore, we
configured JMH to run the Garbage Collector (GC) between
measurement iterations to reduce a possible confounding
effect of the GC on time measurements.

Because each evaluated library comes with its own API,
we implemented facades to uniformly access them. In our
evaluation we use collections of sizes 2x for x ∈ [1, 23].
Our selected size range was previously used to measure
the performance of HAMTs [3]. For every size, we fill the
collections with numbers from a random number generator

8 https://github.com/DimitrisAndreou/memory-measurer
9 http://openjdk.java.net/projects/code-tools/jmh/

and measure the resulting memory footprints. Subsequently
we perform the following operations and measure their
running times:

Lookup, Insert and Delete: Each operation is measured
with a sequence of 8 random parameters to exercise dif-
ferent trie paths. For Lookup and Delete we randomly
selected from the elements that were present in the data
structures.10 For Insert we ensured that the random se-
quence of values was not yet present.

Lookup (Fail), Insert (Fail) and Delete (Fail): Measuring
unsuccessful operations. The setup equals the aforemen-
tioned setting, however with the difference that we swap
the sequences of present/not present parameters.

Iteration (Key): Iterating over the elements of a set or the
keys of a map respectively.

Iteration (Entry): Iterating over a map, yielding tuples of
type Map.Entry.

Equality (Distinct): Comparing two structurally equal data
structures. The two object graphs are distinct from each
other (i.e., they contain no reference equal elements).

Equality (Derived): Comparing two structurally equal data
structures. The second structure is derived from the first
by applying two operations: inserting a new element and
then removing it again.

We repeat the list of operations for each size with five different
trees, starting from different seeds. This counters possible
biases introduced by the accidental shape of the tries and it
also mitigates a threat to external validity: the shape of a tree
depends on the hash codes and hash code transformations
which may vary between implementations or applications.
E.g., Scala’s HAMTs apply a bit-spreading transformation
to every hash code —similar to java.util.HashMap— to
counter badly implemented hash functions.

Evaluating HAMT-based sets and maps containing simply
random integers accurately simulates any application for
which the elements have good uniformly distributed hash
codes. A worse-than-uniform distribution would —regardless
of the HAMT library— overall reduce the memory overhead
per element and increase the cost of updates (both due to
clustering of elements). We consider a uniform distribution
the most representative choice for our comparison.

We first discuss how CHAMP compares against Clojure and
Scala (Sections 6.2 and 6.3), before we focus on the perfor-
mance implications of adding memoization (Section 6.4).

6.2 Runtime Speedup Results
We first report the precision of the individual data points.
For 99% of the data points, the relative measurement error
amounts to less than 1% of the microbenchmark runtimes,
with an overall range of 0–4.9% and a median error of 0%.

10 For < 8 elements, we duplicated the elements until we reached 8 samples.

750

https://github.com/DimitrisAndreou/memory-measurer
http://openjdk.java.net/projects/code-tools/jmh/

●
●

●
●●
●●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−40%

−20%

0%

20%

40%

60%

80%

100%

(a) CHAMP versus Clojure’s PersistentHashMap

●

●
●●
●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−40%

−20%

0%

20%

40%

60%

80%

100%

(b) CHAMP versus Clojure’s PersistentHashSet

Figure 4. Runtime and memory savings of CHAMP compared to Clojure’s PersistentHash{Map,Set}.

●
●

●
●

●
●●
●

● ●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−40%

−20%

0%

20%

40%

60%

80%

100%

(a) CHAMP versus Scala’s immutable.HashMap

●●

●

●

●

●

●

●

●

●

●

●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−40%

−20%

0%

20%

40%

60%

80%

100%

(b) CHAMP versus Scala’s immutable.HashSet

Figure 5. Runtime and memory savings of CHAMP compared to Scala’s immutable.Hash{Map,Set}.

751

We summarize the data points of the runs with the
five different trees with their medians. Then Figure 4a,
4b, 5a, and 5b report for each benchmark the ranges of
runtime improvements and memory footprint reductions.
Each boxplot visualizes the measurements for the whole
range of input size parameters. Because the input sizes
are scaled exponentially we report savings in percentages
using the following formula, normalizing the size factor:
(1−measurementCHAMP /measurementOther) ∗ 100.

Speedups Compared to Clojure’s Maps. In every runtime
measurement CHAMP is better than Clojure. CHAMP improves
by a median 72% for Lookup, 24% for Insert, and 32% for
Delete. At iteration and equality checking, CHAMP signifi-
cantly outperforms Clojure. Iteration (Key) improves by a
median 83%, and Iteration (Entry) by 73%. Further, CHAMP
improves on Equality (Distinct) by a median 96%, and scores
several magnitudes better at Equality (Derived).

Speedups Compared to Clojure’s Sets. The speedups of
CHAMP for sets are similar to maps across the board, with
exception of insertion and deletion where it scores even better.

Speedups Compared to Scala’s Maps. Lookup perfor-
mance improves by a median 23%, especially at small
collections until 128 entries (34–45%). For bigger sizes
the advantage is less pronounced. Given that in practice
most collections are small [21] and that a usual workload
performs more queries than updates, these improvements
look promising. For Lookup (Fail) both implementations
are neck-and-neck, however CHAMP performs better on the
smaller half of the data set and Scala on the bigger half.

Insertion improves by a median 16%, however with a
different pattern from lookup. Insertion performs up to 12%
worse at small collections until 25 entries, and then improves
again (9–28%). At Insert (Fail) CHAMP improves across the
size range (23–47%).

Deletion performs with a median runtime reduction of
25% better than Scala, despite of the compaction overhead.
Only for size 24 CHAMP is 3% slower. For Delete (Fail)
however, CHAMP is behind Scala all-over (13% median).

For iteration and equality checking, CHAMP clearly im-
proves upon Scala’s immutable hash maps. Iteration (Key)
improves by 48% and Iteration (Entry) by 39%.

Equality (Distinct) improves by a median 81%. At Equal-
ity (Derived), unsurprisingly, we perform 100% better be-
cause the operation is in a different complexity class.

Speedups Compared to Scala’s Sets. The results for sets
exhibit similar patterns as the results for maps, however as
expected the runtime and memory savings are across the
board are slightly lower than for maps. Median improve-
ments for Lookup (13%), Insert (13%), and Delete (17%)
highlight that the performance of those operations are similar
to Scala. In contrast, CHAMP performs worse in benchmarks
Lookup (Fail) and Delete (Fail). In case of the former, CHAMP

lags 7–24% behind Scala from sizes 27 upwards, and up to
22% across the whole size range in case of the latter.

For all other benchmarks we have a handful of measure-
ments where Scala does slightly better. Lookup performed
1% worse at sizes 220 and 221. Insert performed up to 11%
slower until 24 elements and 28% slower at size 25.

Iteration (Key) improves by a median 22% and increases
up to 58% for sets bigger than a thousand elements. However,
falsifying our hypothesis, iteration performed 4% worse at
size 21 and at three sizes (smaller than 128) 1% slower. The
median improvements of 66% for Equality (Distinct) and
80% for Equality (Derived) are less pronounced than for
maps, but still substantial. Scala implements set equality with
a structural subsetOf operation that exploits the HAMT en-
coding and therefore performs well. Scala’s subset operation
is conceptually a unidirectional version of structural equality.

6.3 Memory Improvements
CHAMP reduces the footprint of Clojure’s maps by a median
16% (32-bit) and 23% (64-bit), ranging from 3% to 48%.
The median reductions for sets are 30% (32-bit) and
41% (64-bit) respectively, ranging from 19% to 60%.

Compared to Scala’s maps, CHAMP saves a median 68%
(32-bit) and a median 65% (64-bit) memory. Savings range
from 45% to 76%. Note that CHAMP supports a transient rep-
resentation for efficient batch updates, like Clojure does, and
therefore uses one more reference per node. For complete-
ness’ sake we also tested a version of CHAMP without support
for transients —similar to Scala in terms of functionality—
that yields median savings of 71% (32-bit) and 67% (64-bit).

CHAMP reduces memory footprints over Scala’s sets by a
median 52% (32-bit) and 50% (64-bit). Once again, a CHAMP
variant without support for transients yields slightly higher
savings of 57% (32-bit) and 53% (64-bit) respectively.

6.4 Performance Implications of Adding Memoization
Adding memoization of the full 32-bit hash codes improves
worst case performance of lookup, insertion and deletion in
practice (cf. Table 1). In our microbenchmarks this effect is
not observable because we evaluate the performance overhead
that incurs with aforementioned operations. However because
we measure overhead, we can evaluate how the performance
characteristics of operations change with MEMCHAMP.

Figures 6a, 6b, 7a, and 7b show the results of comparing
MEMCHAMP against Clojure’s and Scala’s data structures.
All-over the memory footprint advantage lessens, due to
the additional (consolidated) array of hash codes per node.
As a consequence, MEMCHAMP consumes a median 15%
(and maximally 35%) more memory than Clojure’s maps.
MEMCHAMP still outperforms Clojure in all operations, with
exception of single data points at Insert for maps.

Comparing to Scala, MEMCHAMP retains memory footprint
reductions of at least 49% for maps at sizes bigger than 22,
and reductions of 15–51% for equally sized sets. The only
outliers here are measurements for size 21 where the addi-

752

tional array has a negative impact. The runtimes of lookup
and update operations show a similar profile —but worse net
runtimes— than CHAMP. MEMCHAMP’s allover performance
declines, although median runtimes of aforementioned opera-
tions are still close to Scala, with exception of Delete (Fail).
The reasons for this are twofold. First, locality decreases
because hash codes are stored apart from the elements in a
separate array. Second, copying, modifying, and maintaining
a second array increases the runtimes of operations.

6.5 Summary
Hypothesis 1 has to be answered case-by-case. With respect
to Clojure, it is confirmed. Both variants of CHAMP outper-
form Clojure’s implementations of lookup, insert, and delete.

When compared to Scala, the two inherently different de-
signs reveal varying performance profiles. Hypothesis 1 is
confirmed for CHAMP, because it performs mostly faster and
not often a bit slower than Scala. The exception is when call-
ing delete with a key that is not present in the data structure.
Finally, for MEMCHAMP the hypothesis is falsified, because
several data points violate our thresholds of acceptable loss of
runtime performance. With matching characteristics in terms
of hashCode and equals calls, MEMCHAMP loses runtime per-
formance over Scala, to gain significant memory savings (cf.
Hypothesis 7).

Hypothesis 2 is confirmed as well. Over all implementa-
tions, the median speedups for iteration range from 22–85%.
However, counter to our expectations CHAMP performs up to
4% worse on some small sets when compared to Scala.

Hypothesis 3 is confirmed. Structural equality checking
of two collections that do not share reference equal objects
improves by 96%, 96%, 81% and 66% (medians) over the
competing HAMT implementations.

Hypothesis 4 is confirmed. Structural equality checking of
two derived collections improves by median 80–100%, with
speedups up to 34 x.

Hypothesis 5 is confirmed. Despite increasing the memory
footprint per node, CHAMP-based maps decrease overall
memory footprints by up to 46% compared to Clojure’s maps.
We conclude that savings due to more efficient compaction
outweigh the overhead of the addition of a second bitmap.

Hypothesis 6 is confirmed. When compared to Scala’s
design with leaf nodes, CHAMP reduces memory footprints
by median 65% for maps and 50% for sets.

Hypothesis 7 is confirmed as well. MEMCHAMP adds little
memory overhead over Clojure’s implementation, for a great
part also due to our savings from Hypothesis 6. The median
savings over Scala’s HAMTs still range from 27% to 56%.

To conclude, despite its more complex encoding, CHAMP
achieves excellent runtimes across all tested operations.
MEMCHAMP does add overhead over CHAMP, nevertheless
runtimes of lookup, insertion, and deletion and memory foot-
prints remain competitive. The significant improvements of
the runtime performance of iteration and structural equality
checking are observable for CHAMP and MEMCHAMP likewise.

7. Realistic Case: CFG Dominators
Next to microbenchmarks which isolate important effects
experimentally, we also need to evaluate the new design
on a realistic case to be able to observe its relevance in
relation to other (unexpected) factors. In contrast to the
microbenchmarks that exclude a cost model for hashCode
and equals methods, the realistic case has costs attached to
those methods. We chose to use a classic algorithm from
program analysis which is used in optimizing compilers,
static analysis, reverse engineering tools and refactoring tools:
computing the control flow dominators [1].

Instead of implementing an optimized data structure
specifically for the purpose of computing dominators on
a Control-Flow Graph (CFG) [8] we picked a most direct im-
plementation finding a maximal solution to the two dominator
equations with Scala’s and Clojure’s HAMTs, and CHAMP:

Dom(n0) = {n0}

Dom(n) =

 ⋂
p∈preds(n)

Dom(p)

 ∪ {n}
The benchmark source code11 uses only classical set and
relational calculus in a fixed-point loop: Dom and preds
are implemented as maps, the big intersection is generated
by first producing a set of sets for the predecessors and
then folding intersection over it. The goal is to show that
such a direct implementation is viable when implemented
on top of an optimized representation of immutable sets and
maps. In program analysis pipelines simple high-level code,
immutability and persistency are beneficial especially for
intermediate data structures like dominator sets. It avoids any
bugs caused by unnecessary control and data dependencies.

For our experiment, we obtained all the ±5000 control
flow graphs for all units of code (function, method and script)
of Wordpress,12 one of the most popular open-source Content
Management Systems written in PHP, using the PHP AiR
framework [16]. We then applied the aforementioned domi-
nator implementations to measure CPU time. We used JMH
to measure dominator calculations on a randomly-sampled
subset of all CFGs. Sample sizes ranged from 128 to 4096
in exponential steps; we omitted smaller samples due to the
expected long tail distribution of the CFGs.

This experiment is not trivial since the effect depends on
the shape of the real data and the hard-to-predict dynamic
progression of the algorithm as it incrementally solves the
equations. The nodes in the CFGs we use are the Abstract
Syntax Trees of blocks inside PHP units which are arbitrarily
complex; equality checks on these sub-structures could over-
shadow the computations. The hypothesis is that this case
should highlight our optimizations showing a significant ben-
efit; if not it will invalidate the relevance of our contributions.

11 http://michael.steindorfer.name/papers/oopsla15-artifact
12 https://wordpress.com

753

http://michael.steindorfer.name/papers/oopsla15-artifact
https://wordpress.com

●

●●

●

●
●●●●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−80%
−60%
−40%
−20%

0%
20%
40%
60%
80%

100%

(a) MEMCHAMP versus Clojure’s PersistentHashMap

●

●

●●
●●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−80%
−60%
−40%
−20%

0%
20%
40%
60%
80%

100%

(b) MEMCHAMP versus Clojure’s PersistentHashSet

Figure 6. Runtime and memory savings of MEMCHAMP compared to Clojure’s PersistentHash{Map,Set}.

●
●

●
●
● ●

●

●

●
●●
●

● ●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−80%
−60%
−40%
−20%

0%
20%
40%
60%
80%

100%

(a) MEMCHAMP versus Scala’s immutable.HashMap

●

●
●

●

●

●

●

●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−80%
−60%
−40%
−20%

0%
20%
40%
60%
80%

100%

(b) MEMCHAMP versus Scala’s immutable.HashSet

Figure 7. Runtime and memory savings of MEMCHAMP compared to Scala’s immutable.Hash{Map,Set}.

754

Table 2. Runtimes of Clojure, Scala, and CHAMP for CFG
dominators experiment per CFG count. All libraries are un-
modified.

#CFG Clojure Scala CHAMP
Speedup w.r.t.

Clojure Scala

4096 1686 s 2654 s 170 s 9.9 x 15.6 x

2048 834 s 1387 s 81 s 10.2 x 17.0 x

1024 699 s 1215 s 61 s 11.4 x 19.8 x

512 457 s 469 s 27 s 16.7 x 17.1 x

256 403 s 418 s 18 s 22.3 x 23.1 x

128 390 s 368 s 14 s 28.1 x 26.5 x

Table 3. Runtimes of Clojure, Scala, and CHAMP for CFG
dominators experiment per CFG count. Scala and CHAMP were
modified to calculate hash codes lazily, such as Clojure does.

#CFG Clojure Scala CHAMP
Speedup w.r.t.

Clojure Scala

4096 1686 s 1022 s 565 s 3.0 x 1.8 x

2048 834 s 535 s 289 s 2.9 x 1.8 x

1024 699 s 461 s 243 s 2.9 x 1.9 x

512 457 s 277 s 153 s 3.0 x 1.8 x

256 403 s 241 s 132 s 3.1 x 1.8 x

128 390 s 228 s 123 s 3.2 x 1.8 x

7.1 Results
Table 2 shows the mean runtimes of 10 benchmark executions.
Measurement errors for Clojure and CHAMP are smaller than
1 s, however Scala’s measurements varied by 8–18 s.

CHAMP’s runtimes range from 14–170 s, Clojure ranges
from 390–1686 s, and Scala from 368–2654 s. To summarize,
CHAMP computed the biggest CFG sample of size 4096 more
than two times faster than Clojure and Scala could compute
the smallest sample of size 128. Overall, the speedups range
from minimal 9.9 x to 28.1 x. The highest speedups were
achieved at smaller sample sizes.

Instrumented Libraries to Normalize Results. By profil-
ing and code inspection we identified differences in how
the libraries implement the hash code operation. Instead of
caching, Scala always recomputes the hash code for collec-
tions. This necessarily follows from its design choice where
every internal trie node implements the full container API:
caching hash codes on every level would incur a major mem-
ory overhead. In contrast, Clojure computes collection hash
codes lazily, whereas CHAMP incrementally updates them.

These differences do not influence the microbenchmarks
since they do not invoke hash code calculations at all. Never-
theless, from the dominators case we conclude that caching
hash codes is a critical design element of immutable nested
collections. To remove possible bias from hash code calcu-
lations, we manually modified the source code of Scala and
CHAMP to calculate hash codes lazily such as Clojure does.
Subsequently, we ran the dominator experiment again; the
results are illustrated in Table 3. CHAMP improves over Clo-
jure by median 3 x, and over Scala by 1.8 x. These speedups
are directly accountable to improved iteration and equality
checking performance in this realistic case.

7.2 Conclusion
Although the dominators case was selected to demonstrate
a positive effect of our optimizations, it is real and the

evaluation could have produced a contra-indication of the
relevance of the new CHAMP data structure. It is not true
that every algorithm will benefit from CHAMP, but this case
does provide a strong indication that if you start from the
design decision of immutable intermediate data structures
(functional programming), then CHAMP is bound to be faster
than the traditional renderings of a HAMT on the JVM.

8. Analysis and Threats to Validity
The experimental results in the previous sections answer our
hypotheses. From this we learn that the optimizations work
but not exactly why they work. The three evaluated HAMT
implementations, and their map and set implementations do
not only differ from each other, but also from Bagwell’s
original. In this section we dig deeper to find confirmation of
the hypothesis that indeed better locality is the cause of the
improvement and we discuss which other factors may be at
play to threaten the validity of this claim.

8.1 Differences with Clojure’s Implementation
Firstly, Clojure uses a lazy sequence abstraction for their
iterators. This extra indirection might cause a performance
issue or higher number of cache misses as well. However, we
did isolate the effect of our optimizations comparing versions
of CHAMP itself (cf. Section 8.4), mitigating this threat to
validity.

Secondly, Clojure’s PersistentHashSet internally wraps
a PersistentHashMap instead of specializing for the lack of
a value reference. This explains why memory savings are
bigger for sets than for maps compared to CHAMP, but has no
effect on our conclusions otherwise.

Finally, Clojure uses utility functions for calculating hash
codes that dispatch (with two instanceof checks) on specific
interfaces, to apply specialized hash functions. In our case,
Clojure delegated to the standard hashCode method. How-
ever, these utility functions are called in lookup, insert, and
delete and may have a small negative effect on performance.

755

Table 4. Preliminary measurements of Last-Level Cache misses for data structures of size 223. The number in brackets illustrate
how much CHAMP reduces cache misses over the other implementations.

Operation
Last-Level Cache Misses for Maps Last-Level Cache Misses for Sets

CHAMP Scala Clojure CHAMP Scala Clojure

Equality (Distinct) 112 682 364 452 (3.2 x) 157 240 (1.4 x) 100 576 205 710 (2.0 x) 203 176 (2.0 x)

Equality (Derived) 82 744 351 063 (4.2 x) 146 735 (1.8 x) 71 348 171 872 (2.4 x) 206 862 (2.9 x)

Iteration (Key) 110 397 333 985 (3.0 x) 152 210 (1.4 x) 99 268 205 177 (2.1 x) 160 346 (1.6 x)

Iteration (Entry) 109 979 341 010 (3.1 x) 147 221 (1.3 x) – – –

8.2 Influence of Internal Values versus Leaf Values
The most fundamental difference between CHAMP and Scala’s
implementation is how they store the content. Conceptually,
Scala’s leaf nodes mirror Java’s Map.Entry instances, and
therefore do not require boxing of tuples when iterating
over entries. With leaf nodes, Scala’s HAMT design stores
the content elements exactly one tree level deeper than
other HAMTs. Whereas the differences in memory footprints
can be directly attributed to this difference in design, the
runtime differences for lookup, insertion, and deletion can
not. The median differences between CHAMP and Scala (up to
30%) could be either due to the additional level of memory
indirections or because of implementation details.

8.3 Modeling Costs of Hash Codes and Equality
The microbenchmarks deliberately focused on the overhead
of operations and excluded explicit costs for hashCode and
equals methods. We mitigated this concern by providing
a realistic benchmark that has costs attached, and by addi-
tionally microbenchmarking MEMCHAMP, a CHAMP variant
that exactly matches Scala’s memoized design in numbers of
hashCode and equals invocations. Furthermore, if for a par-
ticular workload the expected costs for hashCode and equals

are known, one could establish a worst case cost calculation
based on Table 1 by weighting the operation runtimes.

8.4 Isolating the Iteration and Equality Contributions
We internally validated that the speedups for structural equal-
ity checking and iteration are due to our contributions by
selectively switching on/off code parts. We are using code
generators to produce all different variants of CHAMP imple-
mentations to mitigate human error.

Thus, we compared our final CHAMP design with a number
of variants. E.g., for equality checking we removed the over-
riding equals implementations (cf. Listing 5 and Listing 6) to
fallback to the equality behavior of java.util.AbstractSet
and AbstractMap implementations. These mini-experiments
do confirm that the compaction and canonical forms are the
main source of performance improvement.

8.5 Observing Cache Misses
Most of our hypotheses in the evaluation are based on a claim
that CHAMP has better cache behavior, but measuring this on
a JVM is not so easy. We used Linux perf tool to observe
low-level cache statistics.13 In particular, we measured the
CPU’s hardware events for Last-Level Cache (LLC) misses
(i.e., how often a data request could not be served any cache)
for the experiments from Section 6. We used JMH’s built-in
bridge to perf for our cache measurements.

In a preliminary setup we applied perf to measure se-
lective data points at a sampling rate of 1000 Hz. Because
sampling does not report the exact amounts of LLC misses,
we restricted our observations to largest input size of 223 to
the following benchmarks: Iteration (Key), Iteration (Entry),
Equality (Distinct), and Equality (Derived). We expect from
the large input size to see the effects of data locality more
accentuated. Table 4 shows the results of these experiments.
For sets and maps a pronounced effect is observable in terms
of cache misses. CHAMP always has fewer cache misses, ex-
plaining (at least for a large part) the observed performance
benefits. A future more fine-grained analysis uncovering dif-
ferent cache levels may reveal more detail.

8.6 Trie Compression and Canonicalization
On insertion Clojure and Scala compress paths, if and only if
the full 32-bit hash codes of two or more elements are equal,
by directly allocating a hash collision node. Canonicalization,
as presented in Section 4, does not implement this form of
compaction currently.

9. Related Work
Trie data structures have been studied since 1959: they were
originally invented by Briandais [10] and named a year later
by Fredkin [13]. Bagwell [2] and Olsson and Nilsson [23]
give an elaborate overview of trie and hash-trie variants and
their performance characteristics.

13 https://perf.wiki.kernel.org/index.php/Main_Page

756

https://perf.wiki.kernel.org/index.php/Main_Page

HAMTs and Persistent Data Structures. In 2001 Bag-
well [3] described the HAMT, a space-efficient trie variant
that encodes the hash code prefixes of elements, while pre-
serving an upper bound in O(log32(n)) on lookup, insertion,
and deletion. Bagwell described a mutable hash-map imple-
mentation, but his HAMT design was picked up to implement
efficient persistent data structures [11, 22]. Persistency refers
to purely functional, immutable data structures that are in-
crementally constructed by referencing its previous states.
The first persistent HAMT implementation can be attributed to
Rich Hickey, lead-developer of Clojure.

CHAMP builds directly on the foundations of HAMTs, im-
proving iteration and equality checking runtime performance
while still reducing memory footprints.

Functional Lists and Vectors Inspired by HAMTs. After
the introduction of HAMTs, Bagwell published about func-
tional list implementations [4] that were evaluated in the
context of Common Lisp and OCaml runtimes. A decade
later Bagwell and Rompf [5] published a techreport about
efficient immutable vectors that feature logarithmic runtimes
of split and merge operations. Stucki et al. [30] improved
upon the latter and performed a broader scale evaluation.

These immutable vectors are Array Mapped Tries (AMTs)
and not HAMTs, because they build prefix trees from the in-
dices of densely filled lists. Nevertheless, the implementation
of such vectors take many design cues from HAMTs.

Concurrent HAMTs. Prokopec et al. [24] worked on mu-
table concurrent HAMTs that feature iterators with snapshot
semantics, which preserve enumeration of all elements that
were present when the iterator was created.

In contrast to Prokopec et al., CHAMP improves a sequen-
tial data structure design. However, similar to Clojure’s im-
plementation, CHAMP supports edits on a thread-local copy
that together with Software Transactional Memory [28] can
be used to resolve concurrent modifications.

Generative Programming Techniques. In other work, we
applied generative programming techniques [7, 9, 20] to
specialize HAMT nodes [29]. We discussed how to reduce the
number of specializations from a large exponential number to
a small subset while still maximizing memory savings. With
this techniques we achieved a median decrease of 55% in
memory footprint for maps and 78% for sets compared to a
non-specialized version, but at the cost of 20–40% runtime
overhead of the lookup operation.

Orthogonal to our previous work, Ureche et al. [31] pre-
sented a specialization transformation technique called mini-
boxing. Miniboxing adds specializations for primitive JVM
data types to Scala, while reducing the generated bytecode.

In contrast to the generative approach, CHAMP achieves
memory reductions and speedups without the need for spe-
cialization. However, generative programming techniques
could be applied to CHAMP to save even more space.

Cache-Aware and Cache-Oblivious Data Structures [19].
Cache-aware data structures store elements in close space
proximity if they are supposed to be used together in close
time proximity. Cache-aware data structures exploit knowl-
edge about the memory block sizes, cache lines, etc. Thus, re-
search about cache-aware data structures is mostly concerned
with (low-level) system programming languages where the
engineer has precise control over memory layout. Java does
not offer this: everything beside primitive numeric data types
are objects that live on the heap.

In contrast, cache-oblivious data structures try to store
elements that are accessed closely in time close to each other,
without considering details of cache and memory hierarchies.
In that sense, CHAMP can be seen as a cache-oblivious HAMT
with respect to iteration and equality checking.

Memory Bloat and Improving Mutable Collections. On
the side of mutable collections, Gil et al. [14] identified
sources of memory inefficiencies and proposed memory com-
paction techniques [14] to counter them. They improved the
memory efficiency of Java’s mutable Hash{Map,Set} and
Tree{Map,Set} data structures by 20–77% while keeping
the runtime characteristics mostly unchanged. In contrast,
CHAMP improves runtime performance of immutable collec-
tions while also slightly improving memory performance.

10. Conclusion
We proposed CHAMP, a new design for Hash-Array Mapped
Tries on the JVM which improves locality and makes sure the
trees remain in a canonical and compact representation.

The evaluation of the new data structure design shows that
it yields smaller memory footprints and that runtimes can be
expected to perform at least the same but usually faster on
all operations (with the exception of a slight disadvantage at
unsuccessful deletes when compared to Scala). We highlight
equality checking and iteration in particular which improves
by order of magnitude in a number of cases.

CHAMP’s design can be used with or without memoization
of hash codes and thus reconciles the benefits of Clojure’s
and Scala’s implementations such as small footprints and
improved worst case runtime performance.

We further showed that memoizing and incrementally
updating collection hash codes is a critical design element of
nested collections, which can be added to sets without a cost.

The proposed data structures are currently used within the
runtime data structures of the Rascal programming language.
We expect CHAMP to be relevant for standard libraries of other
JVM programming languages as well.

Acknowledgments
We thank Mark Hills for providing PHP control flow graphs,
and our colleagues and the anonymous referees for providing
feedback on earlier drafts of this paper.

757

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[2] P. Bagwell. Fast And Space Efficient Trie Searches. Techni-
cal Report LAMP-REPORT-2000-001, Ecole polytechnique
fédérale de Lausanne, 2000.

[3] P. Bagwell. Ideal Hash Trees. Technical Report LAMP-
REPORT-2001-001, Ecole polytechnique fédérale de Lau-
sanne, 2001.

[4] P. Bagwell. Fast Functional Lists, Hash-Lists, Deques, and
Variable Length Arrays. Technical Report LAMP-REPORT-
2002-003, Ecole polytechnique fédérale de Lausanne, 2002.

[5] P. Bagwell and T. Rompf. RRB-Trees: Efficient Immutable
Vectors. Technical Report EPFL-REPORT-169879, Ecole
polytechnique fédérale de Lausanne, 2011.

[6] A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis.
Streams a la carte: Extensible Pipelines with Object Algebras.
In ECOOP ’15: Proceedings of the 29th European conference
on Object-Oriented Programming. Schloss Dagstuhl, 2015.

[7] T. J. Biggerstaff. A perspective of generative reuse. Annals of
Software Engineering, 5(1):169–226, 1998. ISSN 1022-7091.

[8] K. D. Cooper, T. J. Harvey, and K. Kennedy. A Simple, Fast
Dominance Algorithm. Technical Report TR-06-33870, Rice
University, 2006.

[9] K. Czarnecki and U. W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. ACM Press, 2000.

[10] R. De La Briandais. File Searching Using Variable Length
Keys. In Papers presented at the the March 3-5, 1959, western
joint computer conference, pages 295–298. ACM Press, 1959.

[11] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan.
Making data structures persistent. In Proceedings of the 18th
annual ACM symposium on Theory of computing. ACM, 1986.

[12] J. Ebert, D. Bildhauer, H. Schwarz, and V. Riediger. Using dif-
ference information to reuse software cases. Softwaretechnik-
Trends, 2007.

[13] E. Fredkin. Trie Memory. Communications of the ACM, 3(9):
490–499, 1960.

[14] J. Gil and Y. Shimron. Smaller Footprint for Java Collections.
In ECOOP ’12: Proceedings of the 26th European conference
on Object-Oriented Programming. Springer-Verlag, 2012.

[15] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scalable
source code queries with datalog. In ECOOP ’06: Proceedings
of the 20th European Conference on Object-Oriented Program-
ming. Springer-Verlag, 2006.

[16] M. Hills and P. Klint. PHP AiR: Analyzing PHP systems
with Rascal. In Proceedings of IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering. IEEE,
2014.

[17] A. Igarashi and M. Viroli. On Variance-Based Subtyping
for Parametric Types. In ECOOP ’02: Proceedings of the
16th European conference on Object-Oriented Programming.
Springer-Verlag, 2002.

[18] P. Klint, T. van der Storm, and J. Vinju. Rascal: A Domain Spe-
cific Language for Source Code Analysis and Manipulation. In

Proceedings of Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation. IEEE, 2009.

[19] R. E. Ladner, R. Fortna, and B.-H. Nguyen. A Comparison
of Cache Aware and Cache Oblivious Static Search Trees
Using Program Instrumentation. In Experimental Algorithmics.
Springer-Verlag, 2002.

[20] D. McIlroy. Mass-Produced Software Components. In P. Naur
and B. Randell, editors, Proceedings of NATO Software Engi-
neering Conference, pages 138–155. NATO Scientific Affairs
Division, 1968.

[21] N. Mitchell and G. Sevitsky. The causes of bloat, the limits
of health. In OOPSLA ’07: Proceedings of the 22nd annual
ACM SIGPLAN conference on Object-oriented programming
systems and applications. ACM, 2007.

[22] C. Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1999.

[23] R. Olsson and S. Nilsson. TRASH A dynamic LC-trie and hash
data structure. In High Performance Switching and Routing,
2007. HPSR ’07. Workshop on. IEEE, 2007.

[24] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky. Con-
current tries with efficient non-blocking snapshots. In PPoPP

’12: Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming. ACM, 2012.

[25] P. Rademaker. Binary relational querying for structural source
code analysis. Universiteit Utrecht. Master’s thesis, 2008.

[26] I. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S.
Warren. Efficient Tabling Mechanisms for Logic Programs.
In Proceedings of the 12th International Conference on Logic
Programming. Elsevier, 1995.

[27] N. Sarnak and R. E. Tarjan. Planar point location using
persistent search trees. Communications of the ACM, 29(7):
669–679, 1986.

[28] N. Shavit and D. Touitou. Software transactional memory.
ACM Press, 1995.

[29] M. J. Steindorfer and J. J. Vinju. Code Specialization for
Memory Efficient Hash Tries (Short Paper). In GPCE ’14: Pro-
ceedings of Generative Programming Concepts & Experiences.
ACM, 2014.

[30] N. Stucki, T. Rompf, V. Ureche, and P. Bagwell. RRB Vector:
A Practical General Purpose Immutable Sequence. In ICFP
’15: Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming. ACM, 2015.

[31] V. Ureche, C. Talau, and M. Odersky. Miniboxing: improving
the speed to code size tradeoff in parametric polymorphism
translations. In OOPSLA ’13: Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented pro-
gramming systems languages & applications. ACM, 2013.

[32] A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer, and
H. Mössenböck. An object storage model for the truffle lan-
guage implementation framework. In PPPJ ’14: Proceedings
of the 2014 International Conference on Principles and Prac-
tices of Programming on the Java platform. ACM, 2014.

758

	Introduction
	Contributions
	Roadmap

	Background
	HAMTs Compared to Array-based Hashtables
	Mutable and Immutable Update Semantics
	Memory Layouts and Hash Code Memoization

	Increasing Locality
	Partitioning Values and Sub-Nodes
	Mitigating Runtime Overhead
	Summary

	Canonical Tries
	Contract for Canonicalization
	Deletion Algorithm
	Structural Equality Checking
	Summary

	Further Factors of Efficiency
	Implementing Fast Iterators
	Memoization and Hash Codes
	Performance Implications of Memoization

	Assessing Performance Characteristics
	Experiment Setup
	Runtime Speedup Results
	Memory Improvements
	Performance Implications of Adding Memoization
	Summary

	Realistic Case: CFG Dominators
	Results
	Conclusion

	Analysis and Threats to Validity
	Differences with Clojure's Implementation
	Influence of Internal Values versus Leaf Values
	Modeling Costs of Hash Codes and Equality
	Isolating the Iteration and Equality Contributions
	Observing Cache Misses
	Trie Compression and Canonicalization

	Related Work
	Conclusion

